2 00 5 A permanent magnetic film atom chip for Bose - Einstein condensation
نویسندگان
چکیده
We present a hybrid atom chip which combines a permanent magnetic film with a micromachined current-carrying structure used to realize a Bose-Einstein condensate. A novel TbGdFeCo material with large perpendicular magnetization has been tailored to allow small scale, stable magnetic potentials for ultracold atoms. We are able to produce 87 Rb Bose-Einstein condensates in a magnetic trap based on either the permanent magnetic film or the current-carrying structure. Using the condensate as a magnetic field probe we perform cold atom magnetometry to profile both the field magnitude and gradient as a function of distance from the magnetic film surface. Finally we discuss future directions for our permanent magnetic film atom chip.
منابع مشابه
[hal-00347259, v1] Bose-Einstein condensation on a superconducting atom chip
We have produced a Bose-Einstein condensate (BEC) on an atom chip using only superconducting wires in a cryogenic environment. We observe the onset of condensation for 1 · 10 atoms at a temperature of 100 nK. This result opens the way for studies of atom losses and decoherence in a BEC interacting with a superconducting surface. Studies of dipole-blockade with long-lived Rydberg atoms in a smal...
متن کاملepl draft Bose-Einstein condensation on a superconducting atom chip
We have produced a Bose-Einstein condensate (BEC) on an atom chip using only superconducting wires in a cryogenic environment. We observe the onset of condensation for 1 · 10 atoms at a temperature of 100 nK. This result opens the way for studies of atom losses and decoherence in a BEC interacting with a superconducting surface. Studies of dipole-blockade with long-lived Rydberg atoms in a smal...
متن کاملBose-Einstein condensation on a superconducting atom chip
We have produced a Bose-Einstein condensate (BEC) on an atom chip using only superconducting wires in a cryogenic environment. We observe the onset of condensation for 1 · 10 atoms at a temperature of 100 nK. This result opens the way for studies of atom losses and decoherence in a BEC interacting with a superconducting surface. Studies of dipole-blockade with long-lived Rydberg atoms in a smal...
متن کاملBose-Einstein Condensation with High Atom Number in a Deep Magnetic Trap
Cover: Photos of the magnetic trap (by Henk Neerings) with an image of a Bose-Einstein condensate. 4 Two-dimensional magneto-optical trap as a source of slow atoms 41 4. 5 Magneto-optical trap with high atom number 53 5.
متن کاملar X iv : c on d - m at / 0 70 32 00 v 1 8 M ar 2 00 7 Critical Point of an Interacting Two - Dimensional Atomic Bose Gas
We have measured the critical atom number in a harmonically trapped two-dimensional (2D) Bose gas of rubidium atoms at different temperatures. We found this number to be about five times higher than predicted by the semi-classical theory of Bose-Einstein condensation (BEC) in the ideal gas. This demonstrates that the conventional BEC picture is inapplicable in an interacting 2D atomic gas, in s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005